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a b s t r a c t

Steady natural convection at low Prandtl numbers caused by large density differences in a square cavity
heated through the side walls is investigated numerically and theoretically. An appropriate dimension-
less parameter characterizing the density differences of the working fluid is identified by the Gay-Lussac
number. The Boussinesq assumption is achieved when the Gay-Lussac number tends to zero. The Nusselt
number is derived for the ranges in Rayleigh number 10 6 Ra 6 108, in Prandtl number 0.0071 6 Pr 6 7.1
and in Gay-Lussac number 0 6 Ga < 2. The effects of the Rayleigh, Prandtl and Gay-Lussac numbers on the
Nusselt number are discussed on physical grounds by means of a scale analysis. Finally, based on physical
arguments, a heat transfer correlation is proposed, valid for all Prandtl and Gay-Lussac number ranges
addressed.
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1. Introduction

Natural convection in cavities has been intensively studied in
the literature due to its relevance to many fields of science and
technology such as geophysics, nuclear reactor systems, energy
storage and foundry processes.

There are numerous studies in the literature regarding natural
convection in cavities, a considerable amount of which is reviewed
by Ostrach [1]. In particular, rectangular and square cavities are the
most frequently studied due to their many thermo-fluid features,
such as recirculation and stagnation regions, boundary layers, jet
deflection, and thermal entrainment.

In the case of natural convection in cavities due only to temper-
ature differences, in absence of both heat generation and concen-
tration gradients, three main configurations have been
considered in the literature:

(1) natural convection in horizontal layers heated through the
top and bottom walls;

(2) sideways heating of an initially stratified fluid layer;
(3) natural convection in enclosures heated through the side

walls.

The square cavity has been regarded in the literature as the
most suitable case for the validation of numerical codes for ther-
mal analysis and for physical understanding of natural convection
in enclosures.
ll rights reserved.

: +39 0532 974870.
De Vahl Davis [2] provided a well known set of benchmark solu-
tions for steady natural convection of air in a horizontally heated
square cavity for Rayleigh numbers up to 106. Le Quéré [3]
extended the analysis up to Ra = 108.

The account of possible interactions between the fluid in an
enclosure and its surroundings can also be of practical interest.
The influence of participating walls has been analysed for instance
by Costa [4], while the effect of solids located at the corners of the
cavity has been investigated by Costa et al. [5]. However, in most of
the papers [1] conductive walls are not included.

The working fluids analysed in the literature have been mainly
air and water. In addition, due to the interest in foundry processes,
crystal-growing and nuclear reactor systems, liquid metals have
also been studied.

Braunsfurth et al. [6] presented numerical and experimental
temperature profiles corresponding to laminar natural convection
of liquid gallium in a rectangular cavity heated through the side
walls. For the same problem, a simplified model was proposed by
Graebel [7]: the heat transfer results have been derived analyti-
cally for the Prandtl number range from about 0.05 up to infinity.
Lage and Bejan [8] studied laminar natural convection in a
square enclosure heated through the side walls for 0.01 6 Pr 6 10
and 102

6 Ra 6 1011 and addressed the influence of the Prandtl
number on the heat transfer. A similar problem has been ana-
lysed for 0.011 6 Pr 6 0.054 by Saravanan and Kandaswamy [9]:
they observed a significant effect of a variable thermal conductiv-
ity on the heat transfer through the cavity. For liquid gallium,
significant differences were also evident in a comparison be-
tween 2-D and 3-D numerical predictions carried out by Derebail
and Koster [10].
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Nomenclature

cp specific heat at constant pressure
F 0B buoyancy forces per unit depth
F 0I inertial forces per unit depth
F 0v viscous forces per unit depth
g acceleration of gravity
Ga Gay-Lussac number, Ga = boH
h0 specific enthalpy
L width of the cavity
n outward unit normal vector
Nu average Nusselt number, Eq. (24)
Nuy local Nusselt number, Eq. (23)
Nuy,max maximum value of local Nusselt number
Nuy,min minimum value of local Nusselt number
p0 pressure
p dimensionless pressure, p = (p0 + qogy0)/P
P reference pressure, P = qoU2

Pr Prandtl number, Pr = to/ao

Q0 heat flux per unit depth through an isothermal side of
the cavity

q00 specific heat flux per unit depth
Ra Rayleigh number, Ra = gboHL3/(aoto)
T0 temperature
T 0o reference temperature, T 0o ¼ ðT

0
h þ T 0cÞ=2

T dimensionless temperature, T ¼ ðT 0o � T 0Þ=H
u0, v0 Cartesian velocity components
u, v dimensionless Cartesian velocity components, u = u0/U

and v = v0/U

U reference velocity, U = (gboLH)1/2

V characteristic vertical velocity on the thermal layer
x0, y0 Cartesian co-ordinates
x, y Cartesian dimensionless co-ordinates, x0/L and y0/L

Greek symbols
a thermal diffusivity
b volumetric coefficient of thermal expansion
dT thermal layer thickness
k thermal conductivity
l dynamic viscosity
t kinematic viscosity
H characteristic temperature difference, H ¼ T 0h � T 0c
q density
PN dimensionless parameter, Eq. (42)

Subscripts
c cold wall
h hot wall
o at the reference temperature T 0o
r at the reference temperature T 0r
w wall
adv advection
cond conduction
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In connection with advanced engineering applications in
nuclear reactor systems, recent studies on natural convection in
enclosures at low Prandtl numbers address the effects of
magneto-hydrodynamic interactions and volumetric heating.
Some representative studies can be found in [11–15].

The whole quoted papers [1–15] deal with the Boussinesq
approximation. However, in many practical applications, the natu-
ral convection is driven by high temperature differences and, for
these cases, the Boussinesq approach may be too restrictive be-
cause of the strong variations in the thermophysical properties of
the working fluid. This is the case for instance of foundry processes.
For these applications the study of natural convection in enclosures
due to large temperature differences could provide important con-
siderations in the design, both for more efficient operations and for
higher quality manufactures.

In the literature, only a few studies have been undertaken to
examine the influence of the variability of thermophysical proper-
ties on laminar natural convection in cavities.

In the case of heating through the side walls, variable physical
properties have been considered by Zhong et al. [16]. They ob-
served significant variable properties effects on the heat transfer
and also suggested a limit of validity of the Boussinesq approxima-
tion and a heat transfer correlation.

Becker and Braack [17] provided numerical predictions for the
case of laminar natural convection of a weakly compressible
ideal gas (air) in a square cavity heated through the side walls.
The same problem, but for a fully compressible ideal gas, has
been analysed by Vierendeels et al. [18] and by Darabandi and
Hosseinizadeh [19]. A very good agreement can be observed
among the predictions in [17–19]. For the same problem, Paillere
et al. [20] found a very good agreement between the results ob-
tained by the weakly compressible and the fully compressible
model. In these papers [17–20] the Mach number is always very
low; for example, the highest local Mach number predicted in
[20] was about of 10�4.
It may be concluded from reviewing the literature that there is a
lack of information on the influence of low and very low Prandtl
numbers and of large density differences due to large temperature
differences on heat transfer due to natural convection.

The present paper deals with these latter aspects. The analysis
has been carried out for the case of laminar flow in a square cavity
heated through the side walls.

The dimensionless parameter characterizing the density differ-
ences of the working fluid has been identified as the Gay-Lussac
number. Its influence on the Nusselt number has been derived over
its entire physical domain, where the limiting cases lead to the Bous-
sinesq assumption and to extreme density variation, respectively.

Also, the influence of the Prandtl number on Nusselt number
has been examined for 0.0071 6 Pr 6 7.1. The Rayleigh number
studied here ranges from 10 up to 108.

The governing equations were treated by the finite volume CFD
commercial package ANSYS CFX-10.0 [21].

The numerical procedure has been validated by comparison
against the results provided by de Vahl Davis [2], Le Quéré [3], Lage
and Bejan [8] and Wan et al. [22].

The Nusselt number has been derived for the above ranges of
Ra, Pr and Ga numbers.

Finally, a correlation relating the laminar Nusselt number to the
above ranges of parameters has been proposed. Its development is
based on physical arguments based on the conservation of momen-
tum and thermal energy.
2. Mathematical formulation

The system to be considered (Fig. 1) is a two-dimensional
square cavity of width L, where the two vertical walls are kept at
different temperature, T 0h and T 0c. Zero heat flow is assumed at
the top and bottom walls. The walls are rigid and impermeable,
and no-slip boundary conditions are imposed at the boundaries.
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Fig. 1. Model of physical system and boundary conditions.
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The flow is steady. The fluid is incompressible, Newtonian and
its density is supposed to be linearly dependent on temperature
in all the terms of the governing equations. The other thermophys-
ical properties are considered constant at the reference tempera-
ture T 0o, which is posed equal to ðT 0h þ T 0cÞ=2. Viscous dissipation
is neglected.

Based on the above assumptions, the following conservation
equations were solved by the finite volume CFD commercial pack-
age ANSYS CFX-10.0 [21]:

Mass:

o

ox0
ðqu0Þ þ o

oy0
ðqv0Þ ¼ 0 ð1Þ

Momentum:
o

ox0
ðqu0u0Þ þ o

oy0
ðqv0u0Þ

¼ � op0

ox0
þ lo

o2u0

ox02
þ o2u0

oy02
þ 1

3
o2u0

ox02
þ o2v0

ox0oy0

 ! !
ð2Þ

o

ox0
qu0v0ð Þ þ o

oy0
ðqv0v0Þ

¼ � op0

oy0
� qg þ lo

o2v0

ox02
þ o2v0

oy02
þ 1

3
o2u0

ox0oy0
þ o2v0

oy02

 ! !
ð3Þ

Energy:

o

ox0
ðqu0h0Þ þ o

oy0
ðqv0h0Þ ¼ ko

o2T 0

ox02
þ o2T 0

oy02

 !
ð4Þ

For the property assumptions above, the equation of state is
given by:

q ¼ qoð1þ boðT 0o � T 0ÞÞ ð5Þ

When using Eq. (4) for liquid or gases with constant specific
heat, the code ANSYS CFX-10.0 automatically neglects the depen-
dency of the enthalpy on the pressure [21]. Then the specific en-
thalpy is given by:

h0 ¼ cpo
ðT 0 � T 0refÞ þ h0ref ð6Þ

where the reference state is h0ref ¼ 0 J=kg at T 0 ¼ T 0ref .
The boundary conditions are given by:

oT 0

oy0

����
y0¼0;L

¼ 0 ð7Þ

T 0ðx0 ¼ 0Þ ¼ T 0h ð8Þ
T 0ðx0 ¼ LÞ ¼ T 0c ð9Þ
u0jw ¼ v0jw ¼ 0 ð10Þ
Eqs. (1)–(10) have been expressed in dimensionless form,
according to the following dimensionless variables:

T ¼ T 0o � T 0

H
; u ¼ u0

U
; v ¼ v0

U
; p ¼ p0 þ qogy0

P
; x ¼ x0

L
; y ¼ y0

L

The characteristic quantities for this problem are:

H ¼ T 0h � T 0c; U ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gboLH

p
; P ¼ qoU2

In particular, in the case of buoyancy-driven flows, the choice of
the reference velocity U is not unique in the literature. A meaning-
ful velocity scale must be related to the intensity of motion. For
this reason, scales related to the molecular diffusivity as to/L or
ao/L are unrealistic [23]. The choice U = (gboLH)1/2 may be thought
of as a balance of the order of magnitude of the buoyancy forces
and the inertial ones on the global length L and it is suitable when
(Ra/Pr)1/2� 1 [24].

The dimensionless conservation equations are given by:

Mass:
o

ox
ðð1þ GaTÞuÞ þ o

oy
ðð1þ GaTÞvÞ ¼ 0 ð11Þ

Momentum:
o

ox
ðð1þ GaTÞuuÞ þ o

oy
ðð1þ GaTÞvuÞ

¼ � op
ox
þ Pr

Ra

� �1=2
o2u
ox2 þ

o2u
oy2 þ

1
3

o2u
ox2 þ

o2v
oxoy

 ! !
ð12Þ

o

ox
ðð1þ GaTÞuvÞ þ o

oy
ðð1þ GaTÞvvÞ

¼ � op
oy
� T þ Pr

Ra

� �1=2
o2v
ox2 þ

o2v
oy2 þ

1
3

o2u
oxoy

þ o2v
oy2

 ! !
ð13Þ

Energy:

o

ox
ðð1þ GaTÞuTÞ þ o

oy
ðð1þ GaTÞvTÞ ¼ ðPr RaÞ�1=2 o2T

ox2 þ
o2T
oy2

 !

ð14Þ

The boundary conditions are expressed in non-dimensional
form as follows:

oT
oy

����
y¼0;1

¼ 0 ð15Þ

Tðx ¼ 0Þ ¼ Th ¼ �1=2 ð16Þ
Tðx ¼ 1Þ ¼ Tc ¼ 1=2 ð17Þ
ujw ¼ vjw ¼ 0 ð18Þ

The dimensionless numbers are given by:

Pr ¼ to

ao
; Ra ¼ gboHL3

aoto
; Ga ¼ boH

It may be observed that the dimensionless problem, Eqs. (11)–
(18), shows a dimensionless parameter, the Gay-Lussac number,
not present in the case under the Boussinesq assumption. This
parameter quantifies the density differences of the working fluid
under the temperature field. From Eqs. (11)–(18) it may be seen
that the Boussinesq assumption is achieved as Ga tends to zero
with fixed Ra and Pr.

In the literature a Gay-Lussac number is quoted without any
explanations, for instance, in the compilations due to Catchpole
and Fulford [25] and Hahnemann [26], where is presented as
1/Ga. The present Ga has been used to analyse the mixed convec-
tion in reactors [27–32]; the main difference with the present
work stands in the fully compressible ideal gas model used in
[27,28] and in the ideal gas in isobaric transformations used in
[29–32].



Table 1
Comparison of present predictions with previous works for different Prandtl numbers –
Boussinesq

Nu Nuy,max Nuy,min

Pr 0.01 Ra 104 Lage and Bejan [8] 1.50 – –
Present predictions 52 � 52 1.493 – –

Ra 105 Lage and Bejan [8] 2.77 – –
Present predictions 52 � 52 2.763 – –

Pr 0.71 Ra 103 de Vahl Davis [2] 1.118 1.505 0.692
Wan et al.[22] 1.117 1.501 0.691
Present predictions 52 � 52 1.116 1.502 0.692

Ra 104 de Vahl Davis [2] 2.243 3.528 0.586
Wan et al.[22] 2.254 3.579 0.577
Present predictions 52 � 52 2.242 3.533 0.584

Ra 105 de Vahl Davis [2] 4.519 7.717 0.729
Wan et al.[22] 4.598 7.945 0.698
Present predictions 52 � 52 4.521 7.728 0.729

Ra 106 de Vahl Davis [2] 8.800 17.925 0.989
Wan et al.[22] 8.976 17.86 0.9132
Le Quéré [3] 8.825 17.536 0.9795
Present predictions 102 � 102 8.827 17.55 0.980

Ra 107 Wan et al.[22] 16.656 38.6 1.298
Le Quéré [3] 16.523 39.39 1.366
Present predictions 102 � 102 16.55 39.61 1.367

Ra 108 Wan et al.[22] 31.486 91.16 1.766
Le Quéré [3] 30.225 87.24 1.919
Present predictions 204 � 204 30.26 87.79 1.919
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Furthermore, in the case of natural convection in cavities with
large temperature differences, a parameter with the same meaning
of the present Ga has been also referred to temperature difference
ratio [16], relative temperature difference [17], temperature differ-
ence parameter [19,33], dimensionless temperature difference
[34,35], or simply dimensionless parameter [18,20]. This dimension-
less parameter is equal to Ga/(1 � Ga/2) in [16], Ga/2 in [17–
20,34,35] and Ga in [33], respectively.

The specific and the overall heat flux per unit depth are given
by:

q00h;c ¼ koðrT � nÞh;c ð19Þ

Q 0h;c ¼
Z L

0
q00h;c dy0 ð20Þ

The local and mean Nusselt numbers are given by:

Nuy ¼
q00hL
koH

ð21Þ

Nu ¼ Q 0h
koH

ð22Þ

According to the previously defined rules of adimensionalization
and to Eqs. (19) and (20), Eqs. (21) and (22) become:

Nuy ¼
oT
ox

����
h

ð23Þ

Nu ¼
Z 1

0

oT
ox

����
h

dy ð24Þ

The set of Eqs. (1)–(10) were solved by a finite volume tech-
nique using the CFD commercial package ANSYS CFX-10.0 [21].

A base non-equispaced grid 52 � 52 (first cell dimen-
sion = 2 � 10�3L, expansion factor = 1.1602) was selected as a
trade-off between numerical accuracy and computation time.
However, for 106

6 Ra 6 108 only the use of finer grids
(102 � 102 grid, first cell dimension = 1 � 10�3L, expansion fac-
tor = 1.0739; 204 � 204 grid, first cell dimension = 5 � 10�4L,
expansion factor = 1.0361) assured the same level of accuracy of
the base grid.

Second Order Upwind Differencing Scheme (SOUDS) and Up-
wind Differencing Scheme (UDS) were used for Pr > 0.01 and
Pr 6 0.01, respectively. In particular, for the lowest Prandtl num-
bers addressed in the present paper, UDS provided the best perfor-
mance, both in terms of accuracy and numerical convergence.

Different under relaxation factors were used depending on the
value of the Prandtl number. For Pr > 0.071, a 0.9 under relaxation
factor was used just for the momentum equations, Eqs. (2) and (3).
For Pr 6 0.071, 0.08 and 0.1 under relaxation factors were used for
the momentum, Eqs. (2) and (3), and energy, Eq. (4), equations,
respectively.

Finally, the following criterion to check for the steady-state
solution was used:

Q 0h þ Q 0c
Q 0h

����
���� 6 10�4 ð25Þ
3. Results and discussion

The numerical procedure has been validated by comparison
against the results provided by Lage and Bejan [8], de Vahl Davis
[2], Wan et al. [22] and Le Quéré [3]. These results have been de-
rived under the Boussinesq assumption.

The comparison is summarized in Table 1. For Pr = 0.01 a very
good agreement between the present predictions and those pro-
vided by Lage and Bejan [8] can be observed. For Pr = 0.71 and
Ra = 103, 104 and 105 the present predictions are in a very good
agreement with the data provided by de Vahl Davis [2] and in a far-
ly good agreement with those provided by Wan et al. [22]. For
Pr = 0.71 and Ra = 106 a very good agreement with the predictions
provided by Le Quéré [3] and those provided by de Vahl Davis [2] is
evident; an appreciable difference is still evident with the predic-
tions provided by Wan et al. [22]. For Pr = 0.71 and Ra = 107 and
108 a very fine grid (204 � 204) provided a very good agreement
with Le Quéré [3], while the agreement with the results provided
by Wan et al. [22] is still fairly good.

In order to investigate the influence of the Prandtl and Gay-Lus-
sac numbers on the laminar mean Nusselt number, further compu-
tations have been carried out for different values of dimensionless
parameters.

The Prandtl number range 0.0071 6 Pr 6 7.1 has been consid-
ered. Following the suggestions by Lage and Bejan [8], in order to
assure laminar flow solutions, this range was split in
0.0071 6 Pr < 0.71 and 0.71 6 Pr 6 7.1, for 10 6 Ra 6 105 and
10 6 Ra 6 108, respectively.

The Gay-Lussac number range 0 6 Ga < 2 has been considered.
The density must obviously be always positive. Taking into consid-
eration that the lowest density is reached along the hot wall, from
the dimensionless form of Eq. (5) it follows:

ð1þ GaThÞ > 0 ð26Þ

and the upper bound for Ga (Eq. (16)) becomes:

Ga < 2 ð27Þ

Consequently, it was investigated only for the limit of the mean
Nusselt number as Ga approaches 2, taking into account values only
very close to 2, namely Ga = 1.95–1.98.

In Fig. 2 the influence of the Prandtl number on the mean Nus-
selt number for Ga = 0.3 and 103

6 Ra 6 105 is shown. For a fixed
Gay-Lussac number, Nu increases as Pr increases. In particular
the effect of the Prandtl number is more evident as the Rayleigh
number increases.

In Fig. 3 the influence of the Gay-Lussac number on the mean
Nusselt number for 0.0071 6 Pr 6 7.1 and 103

6 Ra 6 105 is shown.
The abscissa has been bounded by the value Ga = 1.5, since for val-
ues of Ga very close to 2 the results only have a mathematical
meaning, not a physical one. In the range of analysis, for fixed val-
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ues of Ra and Pr, when the density varies in the whole terms of the
conservation equations, the mean Nusselt number is always lower
than that calculated under the Boussinesq model (Ga = 0, Ra and Pr
fixed). The difference between Nu(Ga > 0, Ra and Pr fixed) and
Nu(Ga = 0, Ra and Pr fixed) is not appreciable when Ga < 0.3. The
highest differences are achieved when Ga = 1.5 and varies from
about 1% to 7%, as the Rayleigh number increases from 103 to 105.

4. Scale analysis

A scale analysis has been developed in order to investigate in
physical terms the influence on the mean Nusselt number of the
dimensionless parameters as used here. Furthermore, on the basis
of the present scale analysis, a single dimensionless quantity PN

has been introduced to correlate the present Nu predictions.
Procedures already available in the literature have been the

starting point for the present analysis. Bejan [36] used the vertical
boundary layer approximation for the scale analysis for natural
convective Boussinesq flows in enclosures: the analysis is per-
formed in limiting situations, for very low and very high Prandtl
numbers. This approach has been extended to the entire Prandtl
number range by Arpaci [37] for microscale buoyant turbulent
flows and by Arpaci and Agarwal [38] for turbulent ceiling fires.
Aydin and Guessoues [39] developed further on the methodology
in the case of free convection from an uniformly heated vertical
plate.

Unlike [36–39], the present calculations show a thermal bound-
ary layer adjacent to the heated and cooled walls only for Ra P 105.
As a consequence, in the present analysis the boundary layer ap-
proach has been not used.

Referring to the heated side wall, for the present analysis the
following scale parameters are used:

� Length scales: x0 � dt, y0 � L.
� Velocity scales: v0 � V, u0 � V � dt/L.
� Temperature scales: T 0 �H, ðT 0o � T 0Þ � �H.

where dt is the thickness of the thermal layer where the heat diffu-
sion is assumed to be confined, V is the local vertical velocity scale
on the thermal layer dt. The scale u0 � V � dt/L derives from mass
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conservation, while the temperature scale ðT 0o � T 0Þ � �H has been
considered since T 0 P T 0o for 0 6 x0 6 dt.

First of all, the mean Nusselt number, Eq. (22), has been related
to the scales of the problem. The order of magnitude of the heat
flux through the hot side of the cavity, Q 0h, Eq. (20), according to
the scales of this problem, becomes:

Q 0h � ko
H
dt

L ð28Þ

Therefore, the order of magnitude of the mean Nusselt number,
following Eq. (22), becomes:

Nu � L=dt ð29Þ

In Eqs. (28) and (29) the only unknown is the thermal layer
thickness dt. This quantity can be obtained considering both the
integral energy and vertical momentum balances over the thermal
layer.

The thermal energy balance over the thermal layer dt expresses
a balance between the heat transported by advection, Q 0adv, and
that transported by conduction, Q 0cond:

Q 0adv � Q 0cond ð30Þ

When replacing the flux through a closed surface with the cor-
responding volume integral, these two quantities, Eq. (30), may be
expressed as follows:

Q 0adv ¼
Z L

0

Z dt

0
cpo

qoð1þ boðT 0o � T 0ÞÞ u0
oT 0

ox0
þ v0

oT 0

oy0

� �
dx0dy0 ð31Þ

and:

Q 0cond ¼
Z L

0

Z dt

0
ko

o2T 0

ox02
þ o2T 0

oy02

 !
dx0 dy0 ð32Þ

According to Eqs. (31) and (32) and the scales of the problem,
the energy balance, Eq. (30), becomes:

qocpo
ð1� ð� GaÞÞV H

L
dtL

� �
� ko

H

d2
t

1þ � d2
t

L2

 !
dtL

" #
ð33Þ

The vertical momentum balance over the thermal layer dt ex-
presses a balance between the buoyancy forces (the driving forces
in natural convection) and the inertia and viscous forces:

F 0B � F 0I þ F 0v ð34Þ

where

F 0B ¼ �
Z L

0

Z dt

0
qogboðT 0o � T 0Þdx0dy0 ð35Þ

F 0I ¼
Z L

0

Z dt

0
qoð1þ boðT 0o � T 0ÞÞ u0

ov0

ox0
þ v0

ov0

oy0

� �
dx0dy0 ð36Þ

F 0v ¼
Z L

0

Z dt

0
lo

o2v0

ox02
þ o2v0

oy02
þ 1

3
o2u0

ox0oy0
þ 1

3
o2v0

oy02

 !
dx0 dy0 ð37Þ

According to Eqs. (35)–(37) and the scales of the problem, the
vertical momentum balance, Eq. (34), can be detailed as follows:

½qogGadtL� � qoð1� ð� GaÞÞV
2

L
dtL

 !
þ � lo

V

d2
t

1þ � d2
t

L2

 !
dtL

 !" #

ð38Þ

Eqs. (33) and (38) establish a system of two equations, in an or-
der of magnitude sense only, with two unknowns: the vertical
velocity scale on the thermal layer V and the thermal layer thick-
ness dt. Solving this system, the ratio L/dt becomes:

L
dt
� Rað1� ð� GaÞÞ

Pr�1þ � 1

� �1=2

þ � 1

" #1=2

ð39Þ
From Eq. (39) it can be observed that, when Ga > 0, the ratio L/dt

and, then, the mean Nusselt number, Eq. (29), is always lower than
in the Boussinesq model.

From Eqs. (29) and (39) it follows:

Nu ¼ C1
Rað1� C2GaÞ

Pr�1 þ C3

� �1=2

þ C4

" #1=2

ð40Þ

Eq. (40) can be improved by using the methodology of Churchill
and Usagi [40] and therefore placing:

Nun ¼ 1n þ C1P
1=2
N

h in
ð41Þ

where Eq. (40) deriving from the present scale analysis, is combined
with the limit Nu = 1 pertinent to the pure conductive regime.

In Eq. (41):

PN ¼
Rað1� C2GaÞ

Pr�1 þ C3

� �1=2

þ C4

" #
ð42Þ

By means of a general least squares procedure fitting the
numerical data of Figs. 2 and 3 and the present predictions of Table
1, the values of the coefficients of Eq. (41) and (42) have been
determined as n = 6, C1 = 0.4828, C2 = 0.011, C3 = 4.992, C4 =
�4.588, yielding the final correlation:

Nu ¼ 1þ C1P
1=2
N

� 	6
� �1=6

ð43Þ

In Fig. 4 the mean Nusselt number is plotted versus the param-
eter PN. The solid line represents the correlation given by Eq. (43).
Symbols represent the present numerical predictions of Figs. 2 and
3 and of Table 1. As can be seen from Fig. 4, Eq. (43) agrees fairly
well with the present numerical predictions.

For the same problem, other heat transfer correlations have
been proposed by Zhong et al. [16] and Emery and Lee [41]. Both
are expressed in the form Nu ¼ A � Ram

r .
For 780 ð1þH=T 0rÞ

2:7
6 Rar 6 106, Zhong et al. [16] proposed:

A ¼ ð8þ ðah=acÞ0:84Þ�1
; m ¼ 0:322; T 0r 	 T 0c

For 0.01 6 Pr 6 1 and 104
6 Rar 6 106, Emery and Lee [41]

suggested:

A ¼ 0:185 � Pr0:089
r ; m ¼ 0:278; T 0r 	 T 0o
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In accordance with these bounds, in Fig. 5 the Nu values calcu-
lated by Eq. (43) and by the correlations proposed by Zhong et al.
[16] and Emery and Lee [41], have been compared with the present
Nu predictions. The Zhong et al. correlation [16] does not fit with
the same accuracy of Eq. (43) the data for the wide Prandtl number
range addressed here; the Emery and Lee correlation [41] is valid
just for a narrow Rayleigh number range in which, however, it is
more accurate than the present one.
5. Concluding remarks

Laminar natural convection in a square cavity heated through
the side walls at low Prandtl numbers with large density differ-
ences has been investigated numerically and theoretically.

An appropriate dimensionless parameter characterizing the
density changes of the working fluid due to the temperature field
has been identified as the Gay-Lussac number.

The influence of the Gay-Lussac number on the mean Nusselt
number has been derived over all its physical field, 0 6 Ga < 2,
where Ga = 0 leads to the Boussinesq assumption. The predic-
tions obtained from the numerical simulation show that the
mean Nusselt number decreases as the Gay-Lussac number in-
creases, with highest differences between the corresponding
cases under the Boussinesq assumption ranging from 1% to 7%,
as the Rayleigh number increases. Furthermore, when Ga > 0,
the computational effort required to achieve the convergence
is 1.5 
 2 times that for the cases using the Boussinesq
assumption.

The influence of the Prandtl number on the mean Nusselt num-
ber has been investigated in the laminar domain. The analysis
shows that the mean Nusselt number increases with the Prandtl
number and, in particular, its effect is more evident at high
Rayleigh numbers.

The influence of the dimensionless parameters Ra, Pr and Ga
on the mean Nusselt number has been elucidated by means of
a scale analysis: this can be regarded as an extension of that
proposed by Arpaci [37] in the case of Ga > 0 and a thick thermal
layer.
Finally, based on physical arguments, a heat transfer correla-
tion, Eq. (43), has been proposed. This expresses the present
numerical predictions with a fairly accurate degree of fidelity, as
shown in Figs. 4 and 5.
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